

Welcome to Python JSONSchema Objects’s documentation!

python-jsonschema-objects provides an automatic class-based
binding to JSON schemas for use in python.

	What

	Why

	Fully Functional Literals

	Supported Operators
	$ref
	The “memory:” URI

	Circular References

	oneOf

	Generating Multiple Top Level Objects

	Installation

	Tests

	Changelog

	API Documentation
	Generated Classes

 [image: Build Status] [https://travis-ci.org/cwacek/python-jsonschema-objects]

What

python-jsonschema-objects provides an automatic class-based
binding to JSON schemas for use in python.

For example, given the following schema:

{
 "title": "Example Schema",
 "type": "object",
 "properties": {
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "age": {
 "description": "Age in years",
 "type": "integer",
 "minimum": 0
 },
 "dogs": {
 "type": "array",
 "items": {"type": "string"},
 "maxItems": 4
 },
 "address": {
 "type": "object",
 "properties": {
 "street": {"type": "string"},
 "city": {"type": "string"},
 "state": {"type": "string"}
 },
 "required":["street", "city"]
 },
 "gender": {
 "type": "string",
 "enum": ["male", "female"]
 },
 "deceased": {
 "enum": ["yes", "no", 1, 0, "true", "false"]
 }
 },
 "required": ["firstName", "lastName"]
}

jsonschema-objects can generate a class based binding. Assume
here that the schema above has been loaded in a variable called
examples:

>>> import python_jsonschema_objects as pjs
>>> builder = pjs.ObjectBuilder(examples['Example Schema'])
>>> ns = builder.build_classes()
>>> Person = ns.ExampleSchema
>>> james = Person(firstName="James", lastName="Bond")
>>> james.lastName
<Literal<str> Bond>
>>> james.lastName == "Bond"
True
>>> james
<example_schema address=None age=None deceased=None dogs=None firstName=<Literal<str> James> gender=None lastName=<Literal<str> Bond>>

Validations will also be applied as the object is manipulated.

>>> james.age = -2
Traceback (most recent call last):
 ...
ValidationError: -2 is less than 0

The object can be serialized out to JSON. Options are passed
through to the standard library JSONEncoder object.

>>> james.serialize(sort_keys=True)
'{"firstName": "James", "lastName": "Bond"}'

Why

Ever struggled with how to define message formats? Been
frustrated by the difficulty of keeping documentation and message
definition in lockstep? Me too.

There are lots of tools designed to help define JSON object
formats, foremost among them JSON Schema [http://json-schema.org].
JSON Schema allows you to define JSON object formats, complete
with validations.

However, JSON Schema is language agnostic. It validates encoded
JSON directly - using it still requires an object binding in
whatever language we use. Often writing the binding is just as
tedious as writing the schema itself.

This avoids that problem by auto-generating classes, complete
with validation, directly from an input JSON schema. These
classes can seamlessly encode back and forth to JSON valid
according to the schema.

Fully Functional Literals

Literal values are wrapped when constructed to support validation
and other schema-related operations. However, you can still use
them just as you would other literals.

>>> import python_jsonschema_objects as pjs
>>> builder = pjs.ObjectBuilder(examples['Example Schema'])
>>> ns = builder.build_classes()
>>> Person = ns.ExampleSchema
>>> james = Person(firstName="James", lastName="Bond")
>>> str(james.lastName)
'Bond'
>>> james.lastName += "ing"
>>> str(james.lastName)
'Bonding'
>>> james.age = 4
>>> james.age - 1
3
>>> 3 + james.age
7
>>> james.lastName / 4
Traceback (most recent call last):
 ...
TypeError: unsupported operand type(s) for /: 'str' and 'int'

Supported Operators

$ref

The $ref operator is supported in nearly all locations, and
dispatches the actual reference resolution to the
jsonschema.RefResolver.

This example shows using the memory URI (described in more detail
below) to create a wrapper object that is just a string literal.

{
 "title": "Just a Reference",
 "$ref": "memory:Address"
}

>>> builder = pjs.ObjectBuilder(examples['Just a Reference'], resolved=examples)
>>> ns = builder.build_classes()
>>> ns.JustAReference('Hello')
<Literal<str> Hello>

The “memory:” URI

The ObjectBuilder can be passed a dictionary specifying
‘memory’ schemas when instantiated. This will allow it to
resolve references where the referenced schemas are retrieved
out of band and provided at instantiation.

For instance, given the following schemas:

{
 "title": "Address",
 "type": "string"
}

{
 "title": "AddlPropsAllowed",
 "type": "object",
 "additionalProperties": true
}

{
 "title": "Other",
 "type": "object",
 "properties": {
 "MyAddress": {"$ref": "memory:Address"}
 },
 "additionalProperties": false
}

The ObjectBuilder can be used to build the “Other” object by
passing in a definition for “Address”.

>>> builder = pjs.ObjectBuilder(examples['Other'], resolved={"Address": {"type":"string"}})
>>> builder.validate({"MyAddress": '1234'})
>>> ns = builder.build_classes()
>>> thing = ns.Other()
>>> thing
<other MyAddress=None>
>>> thing.MyAddress = "Franklin Square"
>>> thing
<other MyAddress=<Literal<str> Franklin Square>>
>>> thing.MyAddress = 423
Traceback (most recent call last):
 ...
ValidationError: 432 is not a string

Circular References

Circular references are not a good idea, but they’re supported
anyway via lazy loading (as much as humanly possible).

Given the crazy schema below, we can actually generate these
classes.

{
 "title": "Circular References",
 "id": "foo",
 "type": "object",
 "oneOf":[
 {"$ref": "#/definitions/A"},
 {"$ref": "#/definitions/B"}
],
 "definitions": {
 "A": {
 "type": "object",
 "properties": {
 "message": {"type": "string"},
 "reference": {"$ref": "#/definitions/B"}
 },
 "required": ["message"]
 },
 "B": {
 "type": "object",
 "properties": {
 "author": {"type": "string"},
 "oreference": {"$ref": "#/definitions/A"}
 },
 "required": ["author"]
 }
 }
}

We can instantiate objects that refer to each other.

>>> builder = pjs.ObjectBuilder(examples['Circular References'])
>>> klasses = builder.build_classes()
>>> a = klasses.A()
>>> b = klasses.B()
>>> a.message= 'foo'
>>> a.reference = b
Traceback (most recent call last):
 ...
ValidationError: '[u'author']' are required attributes for B
>>> b.author = "James Dean"
>>> a.reference = b
>>> a
<A message=<Literal<str> foo> reference=<B author=<Literal<str> James Dean> oreference=None>>

oneOf

Generated wrappers can properly deserialize data
representing ‘oneOf’ relationships, so long as the candidate
schemas are unique.

{
 "title": "Age",
 "type": "integer"
}

{
 "title": "OneOf",
 "type": "object",
 "properties": {
 "MyData": { "oneOf":[
 {"$ref": "memory:Address"},
 {"$ref": "memory:Age"}
]
 }
 },
 "additionalProperties": false
}

{
 "title": "OneOfBare",
 "type": "object",
 "oneOf":[
 {"$ref": "memory:Other"},
 {"$ref": "memory:Example Schema"}
],
 "additionalProperties": false
}

Generating Multiple Top Level Objects

Sometimes what you really want to do is define a couple
of different objects in a schema, and then be able to use
them flexibly.

Any object built as a reference can be obtained from the top
level namespace. Thus, to obtain multiple top level classes,
define them separately in a definitions structure, then simply
make the top level schema refer to each of them as a oneOf.

The schema and code example below show how this works.

{
 "title": "MultipleObjects",
 "id": "foo",
 "type": "object",
 "oneOf":[
 {"$ref": "#/definitions/ErrorResponse"},
 {"$ref": "#/definitions/VersionGetResponse"}
],
 "definitions": {
 "ErrorResponse": {
 "title": "Error Response",
 "id": "Error Response",
 "type": "object",
 "properties": {
 "message": {"type": "string"},
 "status": {"type": "integer"}
 },
 "required": ["message", "status"]
 },
 "VersionGetResponse": {
 "title": "Version Get Response",
 "type": "object",
 "properties": {
 "local": {"type": "boolean"},
 "version": {"type": "string"}
 },
 "required": ["version"]
 }
 }
}

>>> builder = pjs.ObjectBuilder(examples["MultipleObjects"])
>>> classes = builder.build_classes()
>>> [str(x) for x in dir(classes)]
['ErrorResponse', 'Local', 'Message', 'Multipleobjects', 'Status', 'Version', 'VersionGetResponse']

Installation

pip install python_jsonschema_objects

Tests

Tests are managed using the excellent Tox. Simply pip install tox, then tox.

Changelog

0.0.18

	Fix assignment to schemas defined using ‘oneOf’

	Add sphinx documentation and support for readthedocs

0.0.16 - Fix behavior of exclusiveMinimum and exclusiveMaximum
validators so that they work properly.

0.0.14 - Roll in a number of fixes from Github contributors,
including fixes for oneOf handling, array validation, and Python
3 support.

0.0.13 - Lazily build object classes. Allows low-overhead use
of jsonschema validators.

0.0.12 - Support “true” as a value for ‘additionalProperties’

0.0.11 - Generated wrappers can now properly deserialize data
representing ‘oneOf’ relationships, so long as the candidate
schemas are unique.

0.0.10 - Fixed incorrect checking of enumerations which
previously enforced that all enumeration values be of the same
type.

0.0.9 - Added support for ‘memory:’ schema URIs, which can be
used to reference externally resolved schemas.

0.0.8 - Fixed bugs that occurred when the same class was read
from different locations in the schema, and thus had a different
URI

0.0.7 - Required properties containing the ‘@’ symbol no longer
cause build_classes() to fail.

0.0.6 - All literals now use a standardized LiteralValue type.
Array validation actually coerces element types. as_dict can
translate objects to dictionaries seamlessly.

0.0.5 - Improved validation for additionalItems (and tests to
match). Provided dictionary-syntax access to object properties
and iteration over properties.

0.0.4 - Fixed some bugs that only showed up under specific schema
layouts, including one which forced remote lookups for
schema-local references.

0.0.3b - Fixed ReStructuredText generation

0.0.3 - Added support for other array validations (minItems,
maxItems, uniqueItems).

0.0.2 - Array item type validation now works. Specifying ‘items’,
will now enforce types, both in the tuple and list syntaxes.

0.0.1 - Class generation works, including ‘oneOf’ and ‘allOf’
relationships. All basic validations work.

API Documentation

Generated Classes

Classes generated using python_jsonschema_objects expose all defined
properties as both attributes and through dictionary access.

In addition, classes contain a number of utility methods for serialization,
deserialization, and validation.

	
class python_jsonschema_objects.classbuilder.ProtocolBase(**props)

	An instance of a class generated from the provided
schema. All properties will be validated according to
the definitions provided. However, whether or not all required
properties have been provide will not be validated.

	Parameters

	**props – Properties with which to populate the class object

	Returns

	The class object populated with values

	Raises

	validators.ValidationError – If any of the provided properties
do not pass validation

	
as_dict()

	Return a dictionary containing the current values
of the object.

	Returns

	The object represented as a dictionary

	Return type

	(dict)

	
classmethod from_json(jsonmsg)

	Create an object directly from a JSON string.

Applies general validation after creating the
object to check whether all required fields are
present.

	Parameters

	jsonmsg (str) – An object encoded as a JSON string

	Returns

	An object of the generated type

	Raises

	ValidationError – if jsonmsg does not match the schema
cls was generated from

	
missing_property_names()

	Returns a list of properties which are required and missing.

Properties are excluded from this list if they are allowed to be null.

	Returns

	list of missing properties.

	
validate()

	Applies all defined validation to the current
state of the object, and raises an error if
they are not all met.

	Raises

	ValidationError – if validations do not pass

Index

 A
 | F
 | M
 | P
 | V

A

 	
 	as_dict() (python_jsonschema_objects.classbuilder.ProtocolBase method)

F

 	
 	from_json() (python_jsonschema_objects.classbuilder.ProtocolBase class method)

M

 	
 	missing_property_names() (python_jsonschema_objects.classbuilder.ProtocolBase method)

P

 	
 	ProtocolBase (class in python_jsonschema_objects.classbuilder)

V

 	
 	validate() (python_jsonschema_objects.classbuilder.ProtocolBase method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Python JSONSchema Objects’s documentation!

 		
 What

 		
 Why

 		
 Fully Functional Literals

 		
 Supported Operators

 		
 $ref

 		
 The “memory:” URI

 		
 Circular References

 		
 oneOf

 		
 Generating Multiple Top Level Objects

 		
 Installation

 		
 Tests

 		
 Changelog

 		
 API Documentation

 		
 Generated Classes

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

